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Abstract

Background: Vascular endothelial dysfunction is the closely related determinant of ischemic heart disease (IHD).
Endothelial dysfunction and ischemia/reperfusion injury (IRl) have been associated with an increase in microvesicles
(MVs) in vivo. However, the potential contribution of endothelial microvesicles (EMVs) to myocardial damage is
unclear. Here we aimed to investigate the role of EMVs derived from hypoxia/reoxygenation (H/R) -treated human
umbilical vein endothelial cells (HUVECs) on cultured H9c2 cardiomyocytes.

Results: H/R injury model was established to induce HUVECs to release H/R-EMVs. The H/R-EMVs from HUVECs
were isolated from the conditioned culture medium and characterized. H9c2 cardiomyocytes were then incubated
with 10, 30, 60 pg/mL H/R-EMVs for 6 h. We found that H9c2 cells treated by H/R-EMVs exhibited reduced cell
viability, increased cell apoptosis and reactive oxygen species (ROS) production. Moreover mechanism studies
demonstrated that H/R-EMVs could induce the phosphorylation of p38 and JNK1/2 in H9c2 cells in a dose-
dependent manner. In addition, H/R-EMVs contained significantly higher level of ROS than EMVs generated from
untreated HUVECs, which might be a direct source to trigger a cascade of myocardial damage.

Conclusion: We showed that EMVs released during H/R injury are pro-apoptotic, pro-oxidative and directly
pathogenic to cardiomyocytes in vitro. EMVs carry ROS and they may impair myocardium by promoting apoptosis
and oxidative stress. These findings provide new insights into the pathogenesis of IRI.
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Background

Ischemic heart disease (IHD) is the major cause of death
worldwide. The pathological processes leading to IHD
(including myocardial infarction, angina pectoris, or
both) are very complicated and closely accompanied
with ischemia/reperfusion injury (IRI) [1]. It is generally
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accepted that oxidative stress is responsible for the dam-
age of IRI, which is often associated with vascular dys-
function [2]. The endothelial cells that line the inner
layer of blood vessels form a vital and dynamic structure
that is essential for vascular hemostatic balance. These
cells appear to be particularly vulnerable to the deleteri-
ous effects of both hypoxia (ischemia) and reoxygenation
(reperfusion) [3].

Microvesicles (MVs) are small vesicles of 0.1 ~1 um
diameter released from stimulated or apoptotic cells,
such as platelets, endothelial cells, lymphocytes, erythro-
cytes and even smooth muscle cells [4]. MVs contain a
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subset of cell surface proteins derived from the plasma
membrane of the original cells, which allow them to
function as messengers that mediate many biological
processes [5, 6]. In addition, MVs also carry various bio-
active molecules, such as cytokines, RNA and DNA de-
rived from their metrocyte, which can be transferred
into target cells and mediate a series of biological effects
[7-9]. Increased levels of circulating MVs have been sug-
gested in acute coronary ischemia, myocardial infarction
and other THD, and MVs are likely contributing to endo-
thelial dysfunction, leukocyte adhesion, platelet activa-
tion and obstruction of blood flow [10].

It has been reported that endothelial microvesicles
(EMVs) may participate in inflammatory responses or
angiogenesis, and propagate biological responses involved
in haemostatic balance [11, 12]. Recent evidence suggests
that EMVs may contribute to the oxidative injury and cell
apoptosis in the course of IRI [13]. EMVs derived under
pathological high glucose conditions induce adhesion pro-
tein expression in endothelial cells and subsequent mono-
cyte adhesion in a NADPH oxidase-ROS-p38-dependent
way [14]. Our group previously reported that MVs derived
from hypoxia/reoxygenation-treated HUVECs impaired
relaxation of rat thoracic aortic rings, and declined the
production of NO and the expression of p-eNOS [15]. In
this experiment, we established hypoxia/reoxygenation in-
jury model to induce EMVs release in vitro and investi-
gated its role on endothelial function of the aortic rings.
However, the detailed mechanisms underlying EMVs-
mediated cardiac damage and its relation to oxidative
stress are not clear. Here we demonstrated the pathogenic
roles of H/R-EMVs: (i) to cause cardiomyocytes injury dir-
ectly; (ii) to promote cardiomyocytes apoptosis; (iii) to
generate ROS in cardiomyocytes.

Methods

Cell culture

Human umbilical vein endothelial cells (HUVECs,
Human EA hy926 endothelial cells, Cell bank of Chinese
Academy of Sciences, Shanghai, China) and H9c2 cells
(ATCC, Manassas, VA, USA) were cultured in DMEM
(Hyclone, Logan, UT, USA) with 10 % FBS (Gibco, CA,
USA) under standard cell-culture conditions (37 °C, 5 %
CO,). All procedures were performed in accordance
with the Declaration of Helsinki of the World Medical
Association and the research protocol was approved by
Ethics Committee of Tianjin Medical University.

H/R-EMVs preparation

To generate endothelial microvesicles (EMVs), HUVECs
were stimulated by hypoxia/reoxygenation (H/R) as pre-
viously described [15]. HUVECs of passage 5-8 were
used when 70-80 % confluent. Briefly, HUVECs were
subjected to hypoxic buffer (in mM: 0.9 NaH,PO,, 6.0
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NaHCO3, 1.0 CaCl,, 1.2 MgSQO,, 20.0 HEPES, 98.5 NaCl,
10.0 KCl, 40.0 sodium lactate, pH 6.2) in a hypoxic
chamber (95 % N, and 5 % CO,, Billups-Rothenberg,
Del Mar, CA, USA) for 12 h and then reoxygenated
under standard cell-culture conditions for 4 h. Hypoxic
buffer was collected in 15-mL centrifuge tubes and cen-
trifuged at 2 700 g, 4 °C for 20 min to remove cell
debris. Most supernatants were collected in 13.2-mL
ultracentrifuge tubes and centrifuged at 33 000 rpm for
150 min to pellet H/R-EMVs. The pellet was resus-
pended in 100 pL PBS and kept at =20 °C.

H/R-EMVs characterization by flow cytometry

H/R-EMVs were characterized by flow cytometry in terms
of size assessment and biomarker identification. After cen-
trifuging at 2 700 g, 4 °C for 20 min, aliquots of 90 pL
supernatant without cell debris were collected and fixed
with paraformaldehyde (PFA, Boster immunoleader, Wu-
han, China) to a final concentration of 1 % for 1 h at room
temperature (RT), then snap-frozen in liquid nitrogen and
stored at —80 °C. For flow cytometry analysis, 10 pL fixed
cell-free supernatants were blocked with mouse serum
(Zhongkechenyu, Beijing, China) and then incubated with
5 pL anti-PE-CD144 antibody or its anti-PE Mouse IgG1
isotype (Santa Cruz, CA, USA) in dark for 30 min at
RT, respectively. Latex beads of 1 pm (Molecular Probe,
Invitrogen, Carlsbab, CA, USA) were used to calibrate
gain setting and evaluate the size of EMVs. Events < 1 um
in diameter and CD144 positive were defined as H/R-
EMVs. Each sample was analyzed with the flow cytometer
(FACS Calibur, BD biosciences, Franklin Lakes, NJ, USA).
Protein quantification of H/R-EMVs was performed by a
BCA protein assay (Beyotime, Nanjing, China).

Treatment with H/R-EMVs on H9c2 cells

HO9c2 cells of passage 6—10 were used when 70-80 % con-
fluent. For subsequent experiments, H9¢2 cells were incu-
bated with 10, 30, 60 pg/mL H/R-EMVs for 6 h. After H/
R-EMVs treatment, culture supernatants and protein ex-
tracts of H9c2 cells were collected for further study.

Colorimetric assay of cell viability and LDH activity

Cell viability was determined using methyl thiazolyl
tetrazolium (MTT, Amresco, Solon, OH, USA) method.
H9c2 cells cultured in 96-well plates at 1 x 10° cells/mL
were treated with H/R-EMVs for 6 h. Then they were in-
cubated with 10 pL 0.5 % MTT solution for 4 h at 37 °C.
The supernatant was discarded after the incubation and
150 pL dimethyl sulfoxide was added to each well. The
culture plate was shaken at high speed for 10 min until
crystals dissolved completely. The absorbance of the
blue formazan derivative was measured at a wave-
length of 490 nm using a microplate reader (Bio-Rad
Laboratories, CA, USA).
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Lactate dehydrogenase (LDH) release detection was
performed using a LDH Kit (Jiancheng Bioengineering
Institute, Nanjing, China). Culture supernatants of H9c2
cells were collected after 6 h incubation with H/R-EMVs.
Each supernatant (20 pL) was transferred to a fresh 96-
well plate and an equal volume of freshly prepared reac-
tion mixture was added according to the manufacturer’s
instruction. The absorbance was measured at a wave-
length of 450 nm using the microplate reader following
15 min incubation at 37 °C. All experiments were re-
peated three times independently.

H9c2 cell apoptosis assay

Apoptosis of H9c2 cells was examined by Hoechst
33258 staining, flow cytometry with Annexin V-FITC/PI
staining and caspase 3 activity. After H/R-EMVs treat-
ment, H9¢2 cells in 6-well plates were washed twice with
PBS and stained with 10 pg/mL Hoechst 33258 (KeyGen
Biotech, Nanjing, China) at 37 °C for 20 min, and then ex-
amined under a fluorescent microscope (Nikon Melville,
NY, USA) with the excitation wavelength of 350 nm for
morphological changes.

To perform a quantitative analysis of cell apoptosis,
flow cytometry with Annexin V-FITC/PI staining was
employed. H9¢c2 cells were incubated with 5 pL. Annexin
V-FITC and PI (BD biosciences, Franklin Lakes, NJ,
USA) for 15 min at RT in dark. Cells from each sample
were then analyzed by FacsCalibur flow cytometer. The
data was analyzed using Flowjo software.

For detection of the activity of caspase 3, H9¢2 cells in
6-well plates were trypsinized and collected, then lysed
at 4 °C for 15 min in a caspase 3 lysis buffer (Beyotime,
Nanjing, China). Protein extracts of 10 pL were incu-
bated with 90 pL reaction buffer containing 2 mM
caspase-3 substrate (Ac-DEVD-pNA) for 2 h at 37 °C.
The absorbance was measured at a wavelength of
405 nm using a multilabel reader (Bio-Tek, Winooski,
VT, USA). Results were expressed as nmol/pg protein.

Determination of lipid peroxidation level and superoxide
dismutase activity

Lipid peroxidation levels in H9c2 cells were determined
by estimating malondialdehvde (MDA) levels using the
thiobarbituric acid reactive substance (TBARS) test
(Jiancheng Bioengineering Institute, Nanjing, China).
Cells were lysed by 1 % Triton-X 100 for 30 min on ice
and then centrifuged at 12 000 g, 4 °C for 10 min. Pro-
tein concentration of the supernatants was determined
by the BCA protein assay. Aliquots of 30 pL superna-
tants were incubated with reactive solutions according
to the product instructions. The supernatant absorbance
was measured at a wavelength of 532 nm. The results
were expressed as nmol/mg protein.
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The activity of superoxide dismutase (SOD) was mea-
sured in terms of inhibition of superoxide anions. Protein
samples were prepared in the same way as MDA assay.
Aliquots of 30 pL supernatants were incubated with react-
ive solutions at 37 °C water bath for 40 min. The absorb-
ance was measured at a wavelength of 550 nm. SOD
activities (U/mg protein) were calculated using the equa-
tion provided by the manufacture (Jiancheng Bioengineer-
ing Institute, Nanjing, China).

Measurement of reactive oxygen species

Both reactive oxygen species (ROS) content in H/R-EMVs
and ROS production in H9¢2 cells were determined by
2',7"-dichlorodihydrofluorescein diacetate assay (DCFH-
DA, Beyotime, Nanjing, China). Pelleted H/R-EMVs and
adherent MVs-treated H9¢2 cells were diluted with 10 uM
DCFH-DA and incubated for 20 min at 37 °C in dark, re-
spectively. DCF intensity of MVs samples was analyzed
with flow cytometry. To measure cellular ROS production,
some MVs-treated H9c2 cells were washed and observed
using fluorescent microscopy with the excitation wave-
length of 520 nm. The other MVs-treated H9¢c2 cells were
washed, trypsinized, pelleted and resuspended with PBS at
1 x 10° cells/mL. DCF intensity of these cell samples was
also measured using flow cytometry.

Western blot analysis of Bcl-2/Bax, p-p38 and p-JNK1/2
H9c2 cells were lysed in a lysis buffer (20 mM Tris
pH 7.5, 150 mM NaCl, 1 % Triton X-100, sodium pyro-
phosphate, p-glycerophosphate, EDTA, Na3VOy,, leupep-
tin, Beyotime, Nanjing, China) at 4 °C for 30 min.
Protein concentration was measured using BCA assay.
Equal amounts of proteins (80 pg) were loaded into
12 % SDS electrophoresis and transferred onto PVDF
membranes. Blots were incubated with blocking buffer
for 60 min at RT, then incubated with the relevant pri-
mary antibodies (anti-B-actin, anti-Bcl-2, anti-Bax, anti-
p-JNK1/2 antibody, Santa Cruz, CA, USA; anti-p-p38
MAPK, anti-p38 MAPK, anti-J]NK1/2 antibody, Cell
Signaling Technology, Danvers, MA, USA) overnight
at 4 °C, followed by the corresponding HRP-conjugated
secondary antibodies for 120 min. Then proteins were
revealed by chemiluminescence using the ECL kit
(Beyotime, Nanjing, China).

Statistical analysis

Data were expressed as mean + standard derivation (SD).
The one-way analysis of variance (ANOVA) was used
for multiple comparisons. Statistical evaluation was per-
formed using GraphPad Prism 5. The value of P < 0.05
was considered statistically significant. All experiments
were repeated three times independently.
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Fig. 1 Flow cytometric analysis of H/R-EMVs. a Representative dot plots for H/R-EMVs. H/R-EMVs were gated in R1 which below the area of 1
pm-calibration beads. b Representative dot plots of FSC versus SSC for evaluation of the vehicle of H/R-EMVs. ¢ Representative histogram for
CD144" H/R-EMVs. The solid gray histogram corresponds to H/R-EMVs with isotype antibody. The open black histogram corresponds to H/R-EMVs
with anti-PE-CD144 antibody
J

Results

Characterization of H/R-EMVs

H/R stimulation of HUVECs resulted in the formation of
MVs of about <1 pm in diameter as assessed by flow cy-
tometry. HUVECs were first exposed to hypoxia (12 h) and
reoxygenation (4 h). The H/R injury decreased HUVECs
viability to 70.53 £2.61 % compared with control (P <
0.001, supplemental data). Flow cytometry analysis of H/R-

EMVs was used to determine their size and cellular origin.
Using 1 pm beads as size standards, the majority of H/R-
EMVs were observed around the forward scatter signal cor-
responding to 1 um beads (Fig. 1a, b). Cellular origin was
identified by investigating the specific surface antigens of
MVs. Most of H/R-EMVs externalized their endothelial cell
marker CD144 (Fig. 1c). These results indicated that H/R-
EMVs had a size of <1 pm and expressed on their surface
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Fig. 2 H/R-EMVs exerted cytotoxic effect on H9c2 cells. a MTT assays. H9c2 cells were treated with 10, 30, 60 ug/mL H/R-EMVs for 6 h. The
viability of H9c2 cells was expressed as a percentage relative to non-H/R-EMVs-treated control cells. Control cells were considered to be 100 %
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adhesion molecules of HUVECs

originated.

from which they

H/R-EMVs reduced the viability of H9¢2 cells

To explore whether H/R-EMVs influence the progres-
sion of myocardium damage, target H9c2 cardiomyo-
cytes were exposed to 10, 30, 60 ug/mL H/R-EMVs for
6 h, respectively. Compared with control group, 10 pg/
mL H/R-EMVs showed little effect on H9c2 cells,
whereas 30 and 60 pg/mL H/R-EMVs significantly de-
creased H9c2 cell viability by 10 % and 20 %, respect-
ively (P<0.05, Fig. 2a). The cytotoxic effect of H/R-
EMVs was further confirmed using LDH assay. H/R-
EMVs of 10 pg/mL did not induce more LDH leakage
than the control group. As expected, H9¢2 cells exposed
to 30 and 60 pg/mL H/R-EMVs exhibited more release
of LDH through damaged cell membranes (P <0.05,
Fig. 2b). These findings indicated that H/R-EMVs dis-
played a dose-dependent cytotoxicity in H9c2
cardiomyocytes.

H/R-EMVs increased H9c2 cell apoptosis
In order to investigate the mechanisms of H/R-EMVs-in-
duced cell death, we performed Hoechst 33258 staining
and Annexin V-FITC/PI staining. After being treated
with H/R-EMVs for 6 h, H9¢2 cells were stained with
Hoechst 33258 and observed under the fluorescence
microscope. The dye stains condense chromatin of
apoptotic cells more brightly than that of normal cells.
H/R-EMVs groups in the concentrations of 10 and
30 pg/mL showed few fragmented nuclei, while 60 pg/
mL H/R-EMVs group displayed apparently increasing
number of fragmented or condensed nuclei (Fig. 3a).
Flow cytometry with Annexin V-FITC/PI staining showed
60 pg/mL H/R-EMVs increased the apoptotic rate of tar-
get H9¢2 cells by 18 % (P < 0.05, Fig. 3b, ¢).

To confirm the co-incubation of H9¢2 cells with high
dose of H/R-EMVs is contributable to their apoptosis,

the activity of caspase 3 and expression of Bcl-2/Bax in
target cells were determined. Consistent with the rates
of Annexin V positive cells, caspase 3 activity of H9c2
cells stimulated by 60 pg/mL H/R-EMVs increased to
294.14 +28.03 nmol/pg, compared with 140.23 +29.43
nmol/pg in control group (P < 0.05, Fig. 3d). In addition,
high dose (60 pg/mL) of H/R-EMVs also induced higher
activity of caspase 3 than 10 and 30 pg/mL H/R-EMVs
(P<0.05, Fig. 3d). The dynamic balance of Bcl-2 and
Bax determines a cell’s fate. Bax levels increase but Bcl-2
levels decrease during cell apoptosis. Western blot ana-
lysis revealed that Bcl-2/Bax ratio in H9¢2 cells gradually
decreased with the increasing dose of H/R-EMVs
(Fig. 3e). Therefore, the pro-apoptotic effect of H/R-
EMVs in H9¢2 cells was associated with Bcl-2 inhibition
and Bax up- regulation.

H/R-EMVs induced the oxidative damage in H9c2 cells by
MDA and ROS production

It has been reported that excessive generation of ROS
plays a major role in the initiation of apoptosis during
acute myocardial infarction. Specific ROS such as H,O,
or superoxide have been implicated as crucial mediators
of apoptotic cell death [16]. As mentioned above, H/R-
EMVs were confirmed to be pro-apoptotic, next we
investigated whether H/R-EMVs induce excessive pro-
duction of lipid peroxidation and ROS in target cardio-
myocytes. Results showed that SOD (an eliminator of
free radicals) activity of H9c2 cells decreased, while
MDA (an indicator of lipid peroxidation) content in-
creased markedly in 60 pg/mL H/R-EMVs-treated group
when compared with control (P < 0.01, Fig. 4a, b). In fur-
ther experiments, ROS production was examined by
fluorescent microscopy and flow cytometry in DCFH-
DA-labelled H9¢2 cardiomyocytes. It was observed that
ROS gradually accumulated in H9c2 cells with the in-
creasing dose of H/R-EMVs (Fig. 4c). Flow cytometry
analysis showed that DCF fluorescence (ROS level) in
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60 pg/mL H/R-EMVs-treated group increased by 9.59 %
compared with control (P<0.01, Fig. 4d). These results
suggested that H/R-EMVs trigger ROS production to in-
duce target cell apoptosis and oxidative damage.

H/R-EMVs up-regulated p-p38 MAPK and p-JNK1/2
expression in target H9c2 cardiomyocytes

In this study, we performed Western blot analysis on
p38 and JNK1/2 activation of target H9c2 cells. The
activation of p38 MAPK pathway was indicated by a
significant increase of p38 phosphorylation in H9c2
cardiomyocytes treated with 30 or 60 pg/mL H/R-EMVs
(P<0.01, Fig. 5a). Moreover, the phosphorylation of
JNK1/2 in H9c2 cells was up-regulated significantly in
30 and 60 pg/mL H/R-EMVs groups compared with

control (P<0.01, Fig. 5b). And the levels of p-p38 and
p-JNK1/2 were increased in target cells in a dose-
dependent manner. Thus, these findings showed that ex-
posure of H9¢2 cardiomyocytes to high dose H/R-EMVs
results in activation of both the p38 and JNK1/2 signal-
ing pathways.

H/R-EMVs carried ROS

To determine which factor in H/R-EMVs might be re-
sponsible for p38 and JNK1/2 activation in H9¢c2 cardio-
myocytes, we assessed ROS content in H/R-EMVs. EMVs
derived from normal cultured HUVECs (without hyp-
oxial2 h/reoxygenation 4 h) were introduced as control,
which was defined as C-EMVs. Flow cytometry analysis
showed that the DCF intensity of H/R-EMVs was
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significantly stronger than that of C-EMVs, which indi-
cated that H/R-EMVs contained more ROS than C-EMVs
(639.83 £+41.03 v.s 453.67 £20.42, P<0.001, Fig. 5c¢).
Therefore, H/R-treated HUVECs released EMVs contain-
ing ROS. The ROS-containing EMVs might contribute to
ROS production and subsequent oxidative stress in H9c2
cells.

Discussion

IHD is a fatal disease and characterized by deficiency of
coronary blood supply and impaired myocardium. MVs
from various cellular origins have been identified in
IHD, specially, EMVs account for a large proportion
[17]. Accumulating evidences demonstrate that the ele-
vated EMVs can actively modulate disease progression
mostly including atherosclerosis and myocardial infarc-
tion [11]. EMVs could be interpreted as a vascular injury
marker with prognostic value [18]. However, it is tech-
nically difficult to separate MVs from different origins in
circulating blood. MVs are present at relatively low con-
centrations in normal physiological condition, but their
levels increase in pathophysiological states [19, 20]. Re-
cent evidences showed that MVs could be generated
abundantly from cells undergoing inflammation, radi-
ation, oxidative stress and so on [6]. We have reported
that EMVs could be generated from cultured endothelial

cells by calcium ionophore A23187 in the manner of
magnificent calcium influx [21]. As reperfusion therapy
plays a critical role in the treatment of IHD, further ex-
ploration on the mechanism of IRI is very necessary. In
our research, treatments of HUVECs by H/R in vitro
were used as a new approach to mimic IRI in vivo to
generate EMVs. And flow cytometry analysis confirmed
that the vesicles induced by H/R injury were EMVs with
CD144 positive. However, MVs generated in normal
physiological condition were hard to detect. Therefore,
H/R-EMVs in different doses were used for functional
studies.

Endothelial dysfunction is involved in the initial and
core processes of the pathogenesis of IHD [22]. EMVs,
released in response to endothelial cell activation or
apoptosis, are significantly increased in patients with
IHD, but their potential effect on myocardium is largely
unknown. It has been reported that the level of EMVs
among patients with myocardial infarction was positively
correlated with the extent of vascular inflammation and
myocardial infarct size [23]. EMVs generated from
starved endothelial cells could dose-dependently sup-
press the endothelial cell proliferation with the dosage of
10°-10° EMVs/mL [24]. Interestingly our results showed
that high concentrations of H/R-EMVs could signifi-
cantly promote cell apoptosis.
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Cardiomyocyte apoptosis is a major event in the patho-
genesis of IRL. Preliminary experiments indicated that in
vivo myocardial I/R treatment produced obvious myocar-
dial infarction, and TUNEL staining showed many apop-
totic myocytes in the ischemic area [25]. Apoptosis is
caused by an imbalance between pro-apoptotic and anti-
apoptotic signals. It has already been known that Bax,
Bcl-2, and caspase-3 are downstream molecules in
mitochondrial apoptotic signaling pathway [26]. In particu-
lar, activation of caspase-3 plays a central role in the initi-
ation of apoptosis. In our study, we found that the
expression ratio of Bcl-2/Bax in target cardiomyocytes was
down- regulated by H/R-EMVs but the activity of caspase 3
was enhanced. These results confirmed the pro-apoptotic
effects of H/R-EMVs on cardiomyocytes in vitro.

Specific ROS have been implicated as crucial media-
tors of apoptotic cell death. EMVs exposed to AT1-AA
(Angiotensin II receptor type 1 autoantibody) or high
glucose condition all greatly increased ROS production
in target cells. These “injured” EMVs trigged oxidative
stress and induced endothelial dysfunction [27]. In
agreement with these studies, our research found that
H/R-EMVs increased ROS production in terms of in-
creasing MDA content and decreasing SOD activity in
H9c2 cells.

Because of their potential relevance to cell apoptosis
and oxidative damage, we aimed to determine the pos-
sible pathway in which H/R-EMVs may participate.
Multiple mechanisms have been proposed to explain
myocardial injury during IRL. ROS lead to cell damage
either directly or through behaving as intermediates in
p38 MAPK and JNK1/2 downstream signaling pathways
[28]. As expected, our study found that p38 and JNK1/2
were activated after treatment of 30 or 60 ug/mL H/R-
EMVs. Additionally, it has been demonstrated that spe-
cific inhibition of p38 pathway resulted in reduced
monocyte adhesion, in accordance with the down-
regulation of ICAM-1 and VCAM-1 in target cells [14].
The use of ROS inhibitors could abolish EMVs-induced
ROS production and reduce p38 phosphorylation in tar-
get cells. Moreover, addition of “injured” MVs to primary
hepatocytes induced up-regulation of pro-inflammatory
COX-2 and PKC-§ protein and the activation of JNK1/2
[13]. Taken together, these findings help us speculate
that the activation of p38 and JNK1/2 could be triggered
by ROS accumulation, suggesting that H/R- EMVs
should probably promote oxidative stress in H9¢2 cardi-
omyocytes through p38 MAPK and JNK1/2 pathways.

IRI induces oxidative stress and intense inflammatory
response resulting from the capacity of endogenous con-
stituents. Recently, the bioactive contents carried by
MVs are of great concerns. It has been discovered that
MVs are not merely debris; they can carry cytokines and
nuclear materials such as DNA, RNA, and microRNA
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from their metrocyte [7-9]. MVs from endothelial pro-
genitor cells could transfer mRNA to endothelial cells
and activate an angiogenic program [9]. Here, we found
H/R-EMVs carry ROS with significantly high levels, indi-
cating ROS content in H/R-EMVs might have a link with
oxidative stress in target cells, as well as the increasing
ROS production. However, the exact mechanism of the
increased ROS production in target cells still needs fur-
ther investigation.

Conclusion

In this study, we first established that EMVs could be
generated from H/R-treated HUVECs. Then we demon-
strated that 60 pug/mL H/R-EMVs exerted pro-apoptotic
and oxidative effects on H9c¢2 cardiomyocytes via p38
and JNK1/2 signaling pathways. ROS carried by H/R-
EMVs might be the underlying pathway to explicate their
roles in apoptosis and oxidative stress. These findings in-
dicated that the connection of EMVs and cardiomyocyte
death would be interpreted as a novel intervention to
study IRI, suggesting that decreasing the levels of EMVs
should be a new therapeutic strategy for the maintenance
of endothelial homeostasis and the treatment of IHD.
However, whether other bioactive molecules in EMVs are
contributable to myocardial injury is not clear. Moreover,
our results need to be confirmed with the study of myo-
cardial I/R models in vivo.
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